Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCSE
In Mathematics (1MA1)
Higher (Non-Calculator) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P66305A
Publications Code 1MA1_1H_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General marking guidance

These notes offer general guidance, but the specific notes for examiners appertaining to individual questions take precedence,
1 All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first Where some judgement is required, mark schemes will provide the principles by which marks will be awarded; exemplification/indicative content will not be exhaustive. When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the response should be sent to review.

2 All the marks on the mark scheme are designed to be awarded; mark schemes should be applied positively. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. If there is a wrong answer (or no answer) indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

Questions where working is not required: In general, the correct answer should be given full marks.
Questions that specifically require working: In general, candidates who do not show working on this type of question will get no marks - full details will be given in the mark scheme for each individual question.

3 Crossed out work
This should be marked unless the candidate has replaced it with
an alternative response.
4 Choice of method
If there is a choice of methods shown, mark the method that leads to the answer given on the answer line.
If no answer appears on the answer line, mark both methods then award the lower number of marks.
5 Incorrect method
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review for your Team Leader to check.

6 Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working as you can check the answer, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

7 Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question or its context. (eg an incorrectly cancelled fraction when the unsimplified fraction would gain full marks).
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect (eg. incorrect algebraic simplification).

8 Probability
Probability answers must be given as a fraction, percentage or decimal. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths),
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
9 Linear equations
Unless indicated otherwise in the mark scheme, full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously identified in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

10 Range of answers
Unless otherwise stated, when an answer is given as a range (eg $3.5-4.2$) then this is inclusive of the end points (eg $3.5,4.2$) and all numbers within the range

11 Number in brackets after a calculation

Where there is a number in brackets after a calculation eg $2 \times 6(=12)$ then the mark can be awarded either for the correct method, implied by the calculation or for the correct answer to the calculation.

12 Use of inverted commas
Some numbers in the mark scheme will appear inside inverted commas eg " 12 " $\times 50$; the number in inverted commas cannot be any number - it must come from a correct method or process but the candidate may make an arithmetic error in their working.

13 Word in square brackets
Where a word is used in square brackets eg [area] $\times 1.5$: the value used for [area] does not have to come from a correct method or process but is the value that the candidate believes is the area. If there are any constraints on the value that can be used, details will be given in the mark scheme.

14 Misread
If a candidate misreads a number from the question. eg uses 252 instead of 255; method or process marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

Guidance on the use of abbreviations within this mark scheme

M method mark awarded for a correct method or partial method
$\mathbf{P} \quad$ process mark awarded for a correct process as part of a problem solving question
A accuracy mark (awarded after a correct method or process; if no method or process is seen then full marks for the question are implied but see individual mark schemes for more details)

C communication mark awarded for a fully correct statement(s) with no contradiction or ambiguity

B unconditional accuracy mark (no method needed)
oe or equivalent
cao correct answer only
ft follow through (when appropriate as per mark scheme)
sc special case
dep dependent (on a previous mark)
indep independent
awrt answer which rounds to
isw ignore subsequent working

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
1	$x<5$	M1 A1	for adding 27 to both sides or dividing throughout by 7 (in an inequality or an equation) as a first step or showing 5 as the critical value cao	Can be written as $x=5$
2	$2 \times 2 \times 31$	M1 A1	for a complete method to find prime factors; could be shown on a complete factor tree with no more than one error or by division by prime factors with no more than one error or for $2,2,31$, (1) for $2 \times 2 \times 31$ oe	Condone the inclusion of 1 for this mark Accept $2^{2} \times 31$

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
3	30	P1	$\text { for } 160 \div(3+7)(=16) \text { or } \frac{3}{3+7}\left(=\frac{3}{10}\right)$	Award no marks for a correct answer with no supportive working
		P1	$\text { for " } 16 " \times 3(=48) \text { or " } \frac{3}{10} " \times 160(=48)$	
		P1	for a correct step using 48 $\text { eg " } 48 " \div 8(=6) \text { or " } 48 " \times 25 \div 100(=12)$ or (indep) for combining $\frac{1}{8}$ and 25%, eg $\frac{1}{8}+\frac{1}{4}\left(=\frac{3}{8}\right)$ or " $0.125 "+" 0.25 "(=0.375)$ or " 12.5 " $(\%)+25(\%)(=37.5(\%))$	
		P1	for a complete process to find the number of petrol cars, eg " $48 "-" 6 "-" 12 "$ oe or $\left(1-" \frac{3}{8} "\right) \times " 48 "$ oe or " $\frac{3}{10} " \times\left(1-" \frac{3}{8} "\right) \times 160$ oe	
		A1	cao SC B2 for an answer of 100 if P0 scored	
$\begin{array}{rr}4 & \text { (a) } \\ & \text { (b) } \\ & \text { (c) }\end{array}$	0.00163	B1	cao	
	4.38×10^{5}	B1	cao	
	2.4×10^{-1}	M1	for $4 \times 6 \times 10^{3-5}$ or 0.24 oe eg 24×10^{-2} or 2.4×10^{n} where $n \neq-1$	
		A1		

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
5	132	M1 M1	for finding an exterior angle eg $360 \div 6(=60)$ or $360 \div 5(=72)$ or an interior angle eg $180 \times 4 \div 6(=120)$ or $180 \times 3 \div 5(=108)$ for a complete method $\text { eg } 360 \text { - " } 120 " \text { - " } 108 " \text { or " } 60 "+" 72 "$	Angles may be shown on the diagram. Only award this mark for an angle that is not contradicted Answer only award no marks
		A1	cao	
(b) (c)	5,(1),(-1),-1,1,5	$\begin{aligned} & \hline \mathrm{B} 2 \\ & \text { (B1 } \end{aligned}$	for all 4 values correct for 2 or 3 correct values)	
	Graph drawn	B2 (B1	for a fully correct graph ft (dep on B1 in (a)) for plotting at least 5 of the points from their table correctly)	Accept a freehand curve drawn that is not made of line segments Ignore anything drawn outside the required range
	$\begin{gathered} 0.3 \text { to } 0.5 \\ \text { and } \\ 2.5 \text { to } 2.7 \end{gathered}$	M1	for a correct method, eg marking intercepts with x-axis or one correct solution or both solutions given as a coordinates, eg $(0.4,2.6)$ or $(0.4,0)$ and $(2.6,0)$	ft their graph for this mark
		A1	for answers in the range 0.3 to 0.5 and 2.5 to 2.7 or ft their graph with at least 2 solutions	
7	3:2	P1	for a process to find either volume eg $3^{3}(=27)$ or $4^{3}(=64)$	
		P1	for showing density $\mathbf{A}=81 \div$ " 27 " (= $=3$) or density $\mathbf{B}=128 \div$ " 64 " (=2)	
		A1	for 3:2 oe	Ignore units quoted

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
$\begin{array}{rr}10 & \text { (a) } \\ & \text { (b) }\end{array}$	$\begin{gathered} \hline 10,25,50,80 \\ 85,100 \\ \text { Graph drawn } \end{gathered}$	B1	cao	
		M1	for 5 or 6 of their points plotted correctly from a cf table with no more than one error	If histograms drawn, plots must be identified. Accept a smooth curve or line segments. Ignore to the left of the first point and right of the last point.
		A1	for a fully correct graph SC B1 for 5 or 6 cf values plotted at correct heights not at end but consistently within each interval and joined provided no gradient is negative	
(c)	35 to 39	B1	for answer in the range 35 to 39 or ft their graph (if possible)	
(d)	85 to 93	M1	for finding the difference between readings taken from the profit axis at points from a cf of 25 and a cf of 75 ft their graph (if possible)	
		A1	for answer in the range 85 to 93 or ft their graph (if possible)	If answer is in the range award the marks unless from obvious incorrect working
11	8	P1	for a start to the process, $\operatorname{eg} \frac{9}{9+4+x} \text { or }\left(\frac{3}{7}=\right) \frac{9}{21}$	
			or states that the total number of sweets is 21	
		P1	for forming a correct equation without fractions, eg $9 \times 7=3(9+4+x)$ or $21=9+4+x$	
			OR for $21-9-4$ oe or $1-\frac{9}{21}-\frac{4}{21}\left(=\frac{8}{21}\right)$	
		A1	cao	

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
13	Relationship shown	M1	for use of Pythagoras' theorem, eg $\mathrm{d}_{\mathrm{A}}{ }^{2}=\mathrm{d}_{\mathrm{B}}{ }^{2}+\mathrm{d}_{\mathrm{C}}{ }^{2}$ or $a^{2}=b^{2}+c^{2}$ or $(2 x)^{2}=(2 y)^{2}+(2 z)^{2}$ or $a=\sqrt{b^{2}+c^{2}}$ or uses a $3,4,5$ triangle for forming correct expressions for the areas of at least 2 of the 3 semicircles, eg at least two of $\frac{1}{2} \pi\left(\frac{a}{2}\right)^{2}, \frac{1}{2} \pi\left(\frac{b}{2}\right)^{2}, \frac{1}{2} \pi\left(\frac{c}{2}\right)^{2}$ or at least two of $\frac{1}{2} \pi x^{2}, \frac{1}{2} \pi y^{2}, \frac{1}{2} \pi z^{2}$ or at least two of $\frac{1}{2} \pi\left(\frac{5}{2}\right)^{2}, \frac{1}{2} \pi\left(\frac{3}{2}\right)^{2}, \frac{1}{2} \pi\left(\frac{4}{2}\right)^{2}$ for a fully correct and convincing chain of reasoning, eg showing that eg $\frac{1}{2} \pi\left(\frac{a}{2}\right)^{2}=\frac{1}{2} \pi\left(\frac{b}{2}\right)^{2}+\frac{1}{2} \pi\left(\frac{c}{2}\right)^{2}$ can be reduced to $a^{2}=b^{2}+c^{2}$ or that $(2 x)^{2}=(2 y)^{2}+(2 z)^{2}$ is the same as $\frac{1}{2} \pi x^{2}=\frac{1}{2} \pi y^{2}+\frac{1}{2} \pi z^{2}$	May be seen at any stage Where $\mathrm{d}_{\mathrm{A}}, a, 2 x$, etc are their diameters Could be any Pythagorean triple Where a, b, c are their diameters Where $2 x, 2 y, 2 z$ are their diameters Where 3, 4, 5 are their diameters
14 (a)	0.9	M1	for drawing a tangent at $t=2$	
		M1	for a complete method to find the gradient eg tangent at $t=2$ and " 2.7 " \div " 3 "	Use of change in y over change in x Working may be seen on the diagram
		A1	for answer in the range 0.7 to 1.1	Accept answers in the form $\frac{a}{b}$ where a and b are integers
	Statement	C1	eg distance (travelled)	If units are given they must be correct

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper: 1MA1/1H} \\
\hline Question \& Answer \& Mark \& Mark scheme \& Additional guidance \\
\hline \multirow[t]{2}{*}{15 (a)} \& \multirow[t]{2}{*}{\[
\overrightarrow{A C}=5 \overrightarrow{A B} \text { and }
\] reason
\[
5: 2
\]} \& M1 \& for \(\overrightarrow{A C}=5(3 \mathbf{a}+4 \mathbf{b})\) or \(\overrightarrow{B C}=4(3 \mathbf{a}+4 \mathbf{b})\) or indicates that \(15 \mathbf{a}+20 \mathbf{b}=5 \times(3 \mathbf{a}+4 \mathbf{b})\) \& \\
\hline \& \& C1 \& \begin{tabular}{l}
for \(\overrightarrow{A C}=5 \overrightarrow{A B}\) or \(\overrightarrow{A C}=5(3 \mathbf{a}+4 \mathbf{b})\) or \(15 \mathbf{a}+20 \mathbf{b}=5(3 \mathbf{a}+4 \mathbf{b})\) and a correct reason, \\
eg \(A C\) is a multiple of \(A B\) / multiples of each other / \(A B\) is a factor of \(A C\) or they have the same gradient / are parallel / go in the same direction or they have a point in common / both start at \(A\) or \(A C\) is an enlargement of \(A B\)
\end{tabular} \& \begin{tabular}{l}
Do not award this mark if any incorrect working seen \\
Could use \(A B\) and \(B C\) or \(A C\) and \(B C\)
\end{tabular} \\
\hline (b) \& \(5: 2\) \& P1 \& for \((\overrightarrow{D F}=) 3 \mathbf{e}+6 \mathbf{f}+(-10.5 \mathbf{e}-21 \mathbf{f}) \quad(=-7.5 \mathbf{e}-15 \mathbf{f})\) or for a multiplicative relationship for \(\overrightarrow{D E}\) and \(\overrightarrow{E F}\) eg \(\overrightarrow{E F}=-3.5 \overrightarrow{D E}\) or for \((D E: E F=) 1:-3.5\) oe \& \\
\hline \& \& P1

A1 \& for a multiplicative relationship for $\overrightarrow{D F}$ and $\overrightarrow{D E}$ eg $\overrightarrow{D F}=-2.5 \overrightarrow{D E}$ or for $(D F: D E=)-5: 2$ oe eg $-2.5: 1$ or $-7.5: 3$ or for answer of $2: 5$ oe oe eg $2.5: 1$ \&

\hline
\end{tabular}

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
16	0.78	P1 P1	for using 0.75 or 0.25 in a relevant product, eg $0.75 \times x$ or $0.25 \times y$ for using two products to form an equation, eg $0.75 x+0.25 y=0.36$	Allow different letters Could work with fractions Could set up an equation for pass \times pass + fail \times fail $=0.64$ Accept 78% or any equivalent fraction, eg $\frac{39}{50}, \frac{156}{200}$
		P1 A1	for a correct equation in one variable, eg $0.75(1-p)+0.25 p=0.36$ or $0.75 f+0.25(1-f)=0.36$ oe	
17	$y=\frac{40}{\sqrt{x^{3}}}$	P1	for setting up an equation with a constant term, eg $y=k \sqrt{t}$ or $t=\frac{K}{x^{3}}$	Condone the use of ' α ' instead of ' $=$ ' for the first two P marks Equation can be implied by correct substitution
		P1	for a process to substitute values in one equation, eg $15=k \sqrt{9}$ or $k=5$ or $8=\frac{K}{2^{3}}$ or $K=64$	
		P1	(dep P2) for combining the two equations ft their values of k and K, eg $y=5 \sqrt{\frac{64}{x^{3}}}$ OR for $y=5 \sqrt{t}$ and $t=\frac{64}{x^{3}}$	
		A1	oe	Formula must include 40 Accept other forms for the power of x but must be a single term in x

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
18	16	M1	for working with square root or with reciprocal in $\left(5 \frac{4}{9}\right)^{-\frac{1}{2}}$ $\operatorname{eg}\left(\frac{9}{49}\right)^{\frac{1}{2}} \text { or } \frac{1}{\sqrt{\frac{49}{9}}} \text { or } \frac{1}{\left(\frac{49}{9}\right)^{\frac{1}{2}}} \text { or }\left(\frac{7}{3}\right)^{-1} \text { or } \frac{3}{7}$	
		M1	for a full method to simplify the numerator eg $\frac{3}{7} \times \frac{14}{3}(=2)$	
		M1	for showing $\div 2^{-3}$ as $\times 8$, eg $\frac{3}{7} \times \frac{14}{3} \times 8$ or for $2^{1} \div 2^{-3}\left(=2^{4}\right)$ or for correctly reducing the expression to a single calculation, eg $\frac{336}{21}$ or $\frac{112}{7}$ or $2 \div \frac{1}{8}$	May be seen at any time during the calculation
		A1	cao	Award 0 marks for a correct answer with no supportive working

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
20	$7 x+5 y-82=0$	P1	for process to work out the gradient of the line from the centre of the circle to the point $(6,8)$ eg $\frac{8-3}{6--1}\left(=\frac{5}{7}\right)$	
		P1	$\begin{aligned} & \text { (dep P1) for using } m n=-1 \\ & \operatorname{eg~}-1 \div " \frac{5}{7} "\left(=-\frac{7}{5}\right) \end{aligned}$	
		P1	for substituting $(6,8)$ into $y="-\frac{7}{5} " x+c$ or for $(y-8)="-\frac{7}{5} "(x-6)$ or for $y=-\frac{7}{5} x+\frac{82}{5}$ oe	
		A1	$7 x+5 y-82=0 \text { oe }$ SC B2 for answer of $5 x+7 y-86=0$ oe in any form	Must be in form $a x+b y+c=0$ with integer coefficients, eg $82-7 x-5 y=0$

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
21	$16 \sqrt{3}-\frac{16 \pi}{3}$	P1	for identifying an angle of 60 or 120	Does not need to be in simplest form
		P1	for process to find the area of a sector of angle 60 or 120 eg $\pi 4^{2} \times \frac{60}{360}\left(=\frac{8 \pi}{3}\right)$ or $\pi 4^{2} \times \frac{120}{360}\left(=\frac{16 \pi}{3}\right)$	
		P1	for process to find the area of an equilateral triangle eg $\frac{1}{2} \times 4 \times 4 \times \sin 60(=4 \sqrt{3})$ or $\frac{4 \times \sqrt{4^{2}-2^{2}}}{2}(=2 \sqrt{12}$ or $4 \sqrt{3})$ or the area of an isosceles triangle or area of a right-angled triangle eg $\frac{1}{2} \times 4 \times 4 \times \sin 120(=4 \sqrt{3})$ or $\frac{2 \times \sqrt{4^{2}-2^{2}}}{2}(=\sqrt{12}$ or $2 \sqrt{3})$	
		P1	for using area of sector - area of triangle to find area of a segment eg $\pi 4^{2} \times \frac{60}{360}-\frac{1}{2} \times 4 \times 4 \times \sin 60\left(=\frac{8 \pi}{3}-4 \sqrt{3}\right)$ or $\pi 4^{2} \times \frac{120}{360}-\frac{1}{2} \times 4 \times 4 \times \sin 120\left(=\frac{16 \pi}{3}-4 \sqrt{3}\right)$	
		A1	for $16 \pi-4\left(\frac{16 \pi}{6}-4 \sqrt{3}+\frac{16 \pi}{6}\right)$ or $16 \sqrt{3}-\frac{16 \pi}{3}$ oe	

area of segment $=$ area of sector centre $A-$ area of equilateral triangle Total shaded area $=$ area of circle $-4 \times$ area of sector $-4 \times$ area of segment or area of circle $-4 \times$ area of triangle $-8 \times$ area of segment

area of segment $=$ area of sector centre $A-$ area of isosceles triangle Total shaded area $=$ area of circle $-4 \times$ area of segment

area of segment $=$ area of sector centre $B-$ area of equilateral triangle
Total shaded area $=2 \times$ (area of sector $-2 \times$ area of segment $)$
or $2 \times$ (area of triangle - area of segment)

Modifications to the mark scheme for Modified Large Print (MLP) papers: 1MA1 1H

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme. Notes apply to both MLP papers and Braille papers unless otherwise stated.

The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm 5^{\circ}$
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1_1H			
Question		Modification	Mark scheme notes
5		Wording added 'Look at the diagram for Question 5 in the Diagram Booklet. It shows a regular hexagon and a regular pentagon which share a common side.'. Diagram enlarged. The angle moved outside of the angle arc and the angle arc made smaller. For Braille the diagram has hexagon ABCDEF and pentagon GHICB with x outside the angle arc. Wording now "The diagram is a regular hexagon, ABCDEF , and a regular pentagon, GHICB, joined at the common side, BC." "In the diagram, angle DCI is marked x."	Standard mark scheme
6	(a)	Wording added 'Complete the table below...'. The table turned vertical. Wording added 'There are four spaces to fill.' For Braille Add (i), (ii), (iii) \& (iv) in the blank spaces and "Ans: (i) \qquad (ii) \qquad (iii) \qquad (iv) _" \qquad	Standard mark scheme
6	(b)	Wording added 'Look at the diagram for Question 6(b) in the Diagram Booklet. It shows a grid.' Diagram enlarged. Open headed arrows. Small squares removed. The axes labels moved to the top of the vertical axis and to the right of the horizontal axis.	Standard mark scheme
7		Wording added 'Look at the diagram for Question 7 in the Diagram Booklet. It shows cube A and cube B.' Wording added 'Cube A has sides of length 3 cm '; 'Cube B has sides of length 4 cm .' Diagram enlarged. The diagrams relabelled as 'cube A' and 'cube B'. Braille: have a model with the words "The models represent two cubes, A and B."	Standard mark scheme
8		Wording added 'Look at the table for Question 8 in the Diagram Booklet. It shows...'. The frequency column widened.	Standard mark scheme

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{PAPER: 1MA1_1H} \\
\hline \multicolumn{2}{|l|}{Question} \& Modification \& Mark scheme notes \\
\hline 9 \& \& \begin{tabular}{l}
Wording added 'Look at the diagram for Question 9 in the Diagram Booklet. You may be provided with a model.' \\
Wording added 'A cube is placed on top of a cuboid, to form a solid, as shown by the diagram and the model.' \\
Diagram enlarged. \\
The dashed lines made longer and thicker.
\end{tabular} \& Standard mark scheme \\
\hline 10

10 \& \begin{tabular}{l}
(a)

(b)

(c)

(d)

 \&

Wording added 'Look at the table for Question 10 in the Diagram Booklet. It shows...'.

The values changed so that the answers can be read on a grid line.

25 changed to 30.30 changed to 15.5 changed to 10.15 changed to 20 .

Wording added 'Complete the cumulative frequency table below.' 'There are six spaces to fill.'

Wording added 'Look at the diagram for Question 10(b) in the Diagram Booklet. It shows a grid.

Diagram enlarged. Small squares removed. Open headed arrows. Right axis labelled.

The axes labels moved to the top of the vertical axis and to the left of the horizontal axis. Intermediates added at intervals of 5 on the y axis. The grid cut at 300 on the x axis.

 \&

B1 for $10,25,55,70,80,100$

(b) Standard mark scheme

(c) B1 for answer of 40 or ft their graph (if possible)

(d) M1 for finding the difference between readings taken from the profit axis at points from a cf of 25 and a cf of 75 ft their graph (if possible) A1 for answer in the range 120 to 130 or ft their graph (if possible)
\end{tabular}

\hline 11 \& \& Wording added 'Look at the information for Question 11 in the Diagram Booklet. \& Standard mark scheme

\hline
\end{tabular}

PAPER: 1MA1_1H	Modification	Mark scheme notes	
Question		Wording added 'Look at the diagram for Question 13 in the Diagram Booklet.' Wording added 'three semicircular shaded'. Diagram enlarged. The right angle made more obvious. Shading changed. The regions labelled as 'region A', 'region B' and 'region C'.	Stand scheme 13 14
	Wording added 'Look at the diagram for Question 14 in the Diagram Booklet. It shows...'. Diagram enlarged. Small squares removed. Open headed arrows. Right axis labelled. The axes labels moved to the top of the vertical axis and to the left of the horizontal axis.	Standard mark scheme with leeway in part (a)	
	Wording added 'Look at the diagram for Question 21 in the Diagram Booklet. It shows...'. Diagram enlarged. Shading changed. Labels A, B and C moved to the left.	Standard mark scheme	

Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCSE
In Mathematics (1MA1)
Higher (Calculator) Paper 2H

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
$1 \begin{array}{ll}\text { (a) } \\ & (b) \\ & \\ & \\ & \\ & \\ & \\ & \end{array}$	$40-10 x$	B1 M1	cao for method to expand one bracket, or collect like terms eg $4 \times x+4 \times 3(=4 x+12)$ or $7 \times 4-7 \times 2 x(=28-14 x)$ or $4 \times x-7 \times 2 x(=4 x-14 x)$ and $4 \times 3+7 \times 4(=12+28)$	Where $a \geq 1$ and $b \geq 1$
	$3 x^{2}(5 x+y)$	A1		
		M1	for $3\left(5 x^{3}+x^{2} y\right)$ or $x\left(15 x^{2}+3 x y\right)$ or $3 x\left(5 x^{2}+x y\right)$ or $x^{2}(15 x+3 y)$ or $3 x^{2}(a x+b y)$	
		A1	cao	
2	translation$\binom{-5}{6}$	B1	for translation	Award no marks if more than one transformation is given
		B1	for vector $\binom{-5}{6}$	Do not accept as a coordinate ($-5,6$)
3	89.5 and 90.5	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	for 89.5 in the correct position for 90.5 in the correct position	Accept $90.4 \dot{9}$ or $90.499(\ldots)$

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
4 (a)	19	P1	for process to find area available at festival B, eg $700 \times 2000(=1400000)$	
		P1	for process to find the area available per person at one festival, eg $80000 \div 425(=188.23 \ldots)$ or [area] $\div 6750(=207.40 \ldots)$	Accept either number rounded eg 207 or 188
		P1	for process to find the area available per person at both festivals, eg $80000 \div 425(=188.23 \ldots)$ and [area] $\div 6750(=207.40 \ldots)$	Accept either number rounded eg 207 or 188
		A1	for an answer in the range 18.7 to 19.5	
(b)		C1	for a valid statement relating to scale factor for area,	
			Acceptable examples There are $10000\left(\mathrm{~cm}^{2}\right)$ in $1\left(\mathrm{~m}^{2}\right)$	
			Because $1 \mathrm{~m}^{2}$ is the same as $100 \times 100=10000 \mathrm{~cm}^{2}$ There are 2 side lengths that change from 1 m to 100 cm	
			$300 \div 3$ is 100 should use 100^{2}	
			$300 \div 100 \div 100=0.03$	
			Because it's area not length.	
			Because it's in m^{2} not just metres	
			He hasn't taken the squared sign into account	
			Not acceptable examples There are 1000 cm in 1 m	
			Callum is correct because	
			$3^{2}=9$	
			$300 \times 300=90000$	
			You have to square the number	

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
5	14.5, 21	P1	for process to work with coordinates, eg $4-(-3)(=7)$ or $9-1(=8)$	Accept in reverse order eg -3-4(=-7) and negative distances throughout This mark is implied by 10.5 or 12 or 17.5 or 20
		P1	for process to use ratio, eg " 7 " $\div 2(=3.5)$ or " $8 " \div 2(=4)$ or " 7 " $\times 3(=21)$ or " $8 " \times 3(=24)$	
		P1	for complete process to find x or y coordinate of N, eg " 3.5 " $\times 3+4$ or " 4 " $\times 3+9$ or " 3.5 " $\times 5-3$ or " 4 " $\times 5+1$ OR to find both the required distances eg " 3.5 " $\times 3(=10.5)$ and " 4 " $\times 3(=12)$ or " 21 " $\div 2(=10.5)$ and " 24 " $\div 2(=12)$ or " 3.5 " $\times 5(=17.5)$ and " 4 " $\times 5(=20)$	
		A1	oe	

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper: 1MA1/2H}

\hline Question \& Answer \& Mark \& Mark scheme \& Additional guidance

\hline \multirow[t]{3}{*}{6

7} \& \multirow[t]{3}{*}{600.74} \& M1 \& works out decrease for one year eg $679 \times 4 \div 100(=27.16)$ oe or $679 \times(100-4) \div 100(=651.84)$ oe \& $$
\begin{aligned}
& \text { Implied by } 679 \times 0.12(=81.48) \\
& \text { or } 679 \times 0.88(=597.52)
\end{aligned}
$$

\hline \& \& M1 \& for compound method, eg $679 \times$ " 0.96 "t,$t \geq 2$ or " 651.84 " \times " 0.96 " (= $625.76 .$.$) or " 651.84$ " $\times 0.04$ (= 26.07) or for answers in the range 600.71 to 600.74 \& Values may be rounded or truncated

\hline \& \& A1 \& for 600.71 or 600.72 or 600.73 or 600.74 \& If correct answer seen, and then difference found award M1M1A0

\hline 7 \& No \& P1 \& for a conversion with litres and gallons, \& See page at end of mark scheme

\hline \& \& P1 \& for a conversion with $£$ and euros, eg $27 \times 0.85(=22.95)$ or $40.8 \div 0.85(=48)$ \&

\hline \& \& P1 \& | for finding the unit price, eg $27 \div 18(=1.5)$ |
| :--- |
| OR finding proportionality for fuel eg ("36" $\div 18$) (=2) | \& May compare cost per gallon or cost in euros May be seen in a calculation or given in a description

\hline \& \& C1 \& for No with comparative figures, eg No with 20.4 and 22.95 OR No with 1.275 and $1.133 \ldots$ \& Accept comparative figures rounded or truncated No is implied by eg Wales is cheaper

\hline
\end{tabular}

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
10 (a)	Explanation	C1	for explanation, eg Acceptable examples The IQR is half the data This is half the data $\frac{3}{4}$ of the data is less than $350(000)$ $\frac{3}{4}$ of the data is more than $160(000)$ $\frac{3}{4}$ of the data is lies between $60(000)$ and $350(000)$ $\frac{1}{2}$ of the data lies between $160(000)$ and $350(000)$ Not acceptable examples The data lies between 160 and 350 The IQR is 190 (000) $\mathrm{IQR}=\mathrm{UQ}-\mathrm{LQ}$ The upper and lower quartiles represent half the data	Zeros can be present or missing, but must be consistent.
(b)	box plot drawn	B2 (B1	for fully correct box plot for showing a box and at least 3 correctly plotted values)	Box can be of any height. Accept ends that are marked (eg line, cross, dot) or defined by the end of the whiskers if clear
(c)	decision and comparisons	C1	(ft) for correct comparison of medians eg the median for online is greater than the median for the shop, the shop takes less money from sales in general as the median is lower	Simply quoting values for median, range and IQR is insufficient, they must be compared Median Range IQR $\begin{array}{llll}\text { Online } & 200 & 360 & 190\end{array}$
		C1	(ft) for a correct comparison of a measure of spread, eg the interquartile (range) of sales for the online store is greater than the IQR for the sales of the shop Comparisons for this mark can relate to the range or the IQR. For the award of both marks at least one comparison must be in the context of the question.	Shop 170320180 Also accept figures as 000s as long as consistent. Figures need not be seen but if given they must be correct.

| Paper: 1MA1/2H | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Question | Answer | Mark | Mark scheme | Additional guidance |
| 14 | 1220 | P1 | for $\frac{45}{305}(=0.147 \ldots)$ or $\frac{180}{45}(=4)$ or $\frac{305}{45}(=6.77 \ldots)$ | Decimal values truncated or rounded to 2 dp or more |
| | | Pr $\frac{45}{180}(=0.25)$ | for $\frac{45}{305}=\frac{180}{n}$ or $\frac{45}{180}=\frac{305}{n}$ or $\frac{180 \times 305}{45}$ | |

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
17 (a)	25.9	P1	for process to find volume of hemisphere, $\text { eg } \frac{1}{2} \times \frac{4}{3} \times \pi \times 3.5^{3} \quad(=89.797 \ldots)\left(\frac{343 \pi}{12}\right)$ or for a correct expression for the volume of the cone, eg $\frac{1}{3} \times \pi \times 3.5^{2}(y-3.5)$ or $\frac{1}{3} \times \pi \times 3.5^{2} \times h$ for setting up an equation linking all three aspects, $\begin{aligned} & \text { eg } \frac{1}{2} \times \frac{4}{3} \times \pi \times 3.5^{3}+\frac{1}{3} \times \pi \times 3.5^{2}(y-3.5)=120 \pi \\ & \text { or " } 89.797 \ldots . . "+" 12.828 \ldots . "(y-3.5)=" 376.99 \ldots " \\ & \text { or " } 28.5833 \ldots " \pi+" 4.0833 \ldots " \text { " } \pi(y-3.5)=120 \pi \end{aligned}$ for process to isolate y or $(y-3.5)$ or h in their equation, $\begin{aligned} & \operatorname{eg} \frac{120 \pi-\frac{1}{2} \times \frac{4}{3} \pi 3.5^{3}+\frac{1}{3} \pi 3.5^{3}}{\frac{1}{3} \pi 3.5^{2}} \\ & \text { or } \frac{" 376.99 \ldots "-" 89.797 \ldots "+" 44.898 \ldots "}{" 12.828 \ldots "} \\ & \text { or } \frac{120 \pi-" 28.583 \ldots " \pi+" 14.291 \ldots " \pi}{" 4.083 \ldots " \pi} \text { oe } \end{aligned}$ for answer in range 25.8 to 26.3 SCB3 for an answer in the range 22.3 to 22.8 or $\frac{1097}{49}$	' $y-3.5$ ' may be seen as a new variable, but cannot be just y Condone missing brackets Accept decimals rounded or truncated to 1dp
		P1		$120 \pi-\text { "89.797..." }=287.193 \ldots \text { or } \frac{1097 \pi}{12}$ π may be missing throughout Award of this mark implies award of the previous May be seen in multiple steps
		P1		
				If an answer is given in the range in working and then rounded incorrectly award full marks.

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
(b)	explanation	C1	for explanation, eg Acceptable examples the height would decrease the height would be 0 at 14.227 y would be smaller it would decrease Not acceptable examples the height would increase	
18	7.63	M1 M1	for process to use the cosine rule to find $Q R$, eg $\left(Q R^{2}=\right) 11^{2}+9.4^{2}-2 \times 11 \times 9.4 \cos (27)$ for correct order of operations, eg $Q R=\sqrt{209.36-206.8 \times \cos 27} \quad(=5(.009 \ldots))$ or $Q R=\sqrt{25(.09 \ldots)}$ or $\sqrt{25.1}$ (dep on M1) for process to use the sine rule, eg $\frac{Q S}{\sin 88}=\frac{[Q R]}{\sin 41}$ oe or $\quad Q S=\frac{[Q R] \times \sin 88}{\sin 41}(=7.631 \ldots)$ oe for answer in range 7.61 to 7.632	$[Q R]$ could be written as " $5.009 \ldots$... or could be a different figure, as long as this is clearly associated with the side $Q R$ If an answer is given in the range in working and then rounded incorrectly award full marks. Award 0 marks for a correct answer with no (or incorrect) supportive working
		M1		
		A1		

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
$\begin{array}{ll} 19 & \text { (a) } \\ & \text { (b) } \end{array}$	3	B1	cao	
	$\overline{x^{3}+5}$	M1	for finding $\left(g^{-1}(x)=\right) \frac{x^{3}+5}{2}$ oe	
		M1	for $\left(\operatorname{hg}^{-1}(x)=\right)=\frac{1}{\left[\mathrm{~g}^{-1}(x)\right]}$ oe	[$\left.\mathrm{g}^{-1}(x)\right]$ must be their inverse function and cannot be $\sqrt[3]{2 x-5}$
		A1	Accept $\left(\frac{x^{3}+5}{2}\right)^{-1}$	
20	98	M1	for $B A D=132 \div 2(=66)$	Angles may be seen on diagram
		M1	eg $B C D=180-" 66 "(=114)$ M2 for reflex $B O D=360-132$ or $A B E=180-" 66 "-16(=98)$ $(=228)$ and $B C D=" 228 " \div 2(=114)$	
		A1	for finding $C D E=98$	
		C1	(dep on at least M2) for one circle theorem relevant to their method eg The angle at the centre of a circle is twice the angle at the circumference or Opposite angles of a cyclic quadrilateral add up to 180	Underlined words need to be shown; reasons need to be linked to their method.

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
21 (a) (b)	Sketch $\tan (x+270)^{\circ}-5$	B1 M1 A1	for an appropriate sketch, ie reflection in y axis for describing one part of the translation, eg $360-90(=270)$ or $\tan (x+270)$ or $(y=) \tan (k x+a)-5$ where k and a are numbers and $k \neq 0$ cao	Must go through $(-2,-4)(0,0)(1,1)(3,0)(5,4)$
22	$x<-7, x>8$	M1	for method to solve $x^{2}-49>0$ eg $(x+7)(x-7)$	accept use of = or incorrect inequality symbol for
		A1	for $x<-7$ and $x>7$	This may be implied by a suitable diagram
		M1	for method to solve $5 x^{2}-31 x-72>0$	
			$\operatorname{eg}(5 x \pm 9)(x \pm 8) \text { or } \frac{--31 \pm \sqrt{(-31)^{2}-4 \times 5 \times(-72)}}{2 \times 5}$ or 8 and -1.8 oe	
		A1	for $x<-1.8$ and $x>8$	This may be implied by a suitable diagram
		A1	cao	

Cost per litre in £:	Cost per litre in euros:
27×0.85 (=22.95)	$27 \div 18$ (=1.5)
" 22.95 " $\div 18$ (=1.275)	8×4.5 (=36)
8×4.5 ($=36$)	$40.8 \div 0.85$ ($=48$)
No and $40.8 \div " 36 "=1.133$.. (cost per litre in $£$ in Wales) compared to 1.275 (cost per litre in $£$ in Spain).	No and " 48 " $\div 36$ " $=1.333$.. (cost per litre in euros in Wales) compared to 1.5 (cost per litre in euros in Spain).
Cost per gallon in £:	Cost per gallon in euros:
$40.8 \div 8$ (=5.1)	$40.8 \div 0.85$ ($=48$)
27×0.85 ($=22.95$)	"48" $\div 8$ (=6)
$18 \div 4.5$ (=4)	$18 \div 4.5$ (=4)
No and " 22.95 " $\div 4$ " $=5.7375$ (cost per gallon in $£$ in Spain) compared to 5.1(0) (cost per gallon in $£$ in Wales).	No and $27 \div " 4 "=6.75$ (cost per gallon in euros in Spain) compared to 6 (cost per gallon in euros in Wales).
	Note: " 2 " comes from $8 \div$ " 4 " or " 36 " $\div 18$
Cost of 8 gallons in £:	Cost of 8 gallons in euros:
$18 \div 4.5$ (= 4)	$18 \div 4.5$ (=4)
27×0.85 ($=22.95$)	$40.8 \div 0.85(=48)$
"22.95" \times " 2 " (=45.90)	$27 \times$ "2" ($=54$)
No and 45.90 (total cost in $£$ in Spain) compared to 40.80 (total cost in $£$ in Wales given).	No and 54 (cost for 8 gallons in euros in Spain) compared to 48 (cost of 8 gallons in euros in Wales).
Cost of 18 litres in f :	Cost of 18 litres in euros:
8×4.5 (= 36)	$18 \div 4.5$ (=4)
$40.8 \div$ "2" ($=20.4$)	$40.8 \div 0.85$ ($=48$)
27×0.85 ($=22.95$)	"48" \div " 2 " ($=24$)
No and 22.95 (cost for 18 litres in $£$ in Spain) compared to 20.40 (cost of 18	No and 24 (cost for 18 litres in euros in Wales) compared to 27 (cost of 18 litres in
litres in $£$ in Wales). OR	euros in Spain given). OR
$18 \div 4.5$ (= 4)	8×4.5 (=36)
27×0.85 (=22.95)	$40.8 \div$ " 2 " ($=20.4$)
$40.8 \div$ "2" ($=20.4$)	"20.4" $\div 0.85$ ($=24$)
No and 22.95 (cost for 18 litres in $£$ in Spain) compared to 20.40 (cost of 18 litres in $£$ in Wales).	No and 24 (cost for 18 litres in euros in Wales) compared to 27 (cost of 18 litres in euros in Spain given).

Modifications to the mark scheme for Modified Large Print (MLP) papers: 1MA1 2H

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme. Notes apply to both MLP papers and Braille papers unless otherwise stated.

The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm 5^{\circ}$
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1_2H

Question		Modification	Mark scheme notes
1	(b)	The letter x changed to y.	Standard mark scheme but note change of letter.
2		Wording added 'Look at the diagram for Question 2 in the Diagram Booklet. It shows shape S and shape T on a grid. A cut out shape may be available if you wish to use it.' Cut out shape provided. Diagram enlarged. Shading changed. The axes labels moved to the top of the vertical axis and to the right of the horizontal axis. Open headed arrows. The shapes labelled as 'shape T' and 'shape S'.	Standard mark scheme
9		The frame removed from the formula.	Standard mark scheme
10	(a)	Wording added 'Look at the diagram for Question 10(a) in the Diagram Booklet. It is a box plot which shows...'. The values changed so that they can be on grid lines. The least value changed to 50 ; lower quartile changed to 150 ; greatest value changed to 450 . Diagram enlarged. Small squares removed. The horizontal axis label moved to the left of the horizontal axis. The grid cut at 500 . The wording '...lies between 160000 and 350000 ' removed and replaced by '...lies between 150 000 and 350000^{\prime}.	Standard mark scheme but explanation should reference the adjusted figures. 160 now 150 350 still 350 IQR now 200 (000)
10	(c)	Wording added 'The table below shows...’. Wording added 'Look at the diagram for Question 10(b) in the Diagram Booklet.' The wording 'On the grid below,' removed and replaced by 'On the grid in the Diagram Booklet,'. The values changed so that they can be plotted on grid lines. The least value changed to 50 ; LQ changed to 100 ; median changed to 150 ; UQ changed to 250 . Diagram enlarged. Small squares removed. The horizontal axis label moved to the left of the horizontal axis. The grid cut at 500 .	Standard mark scheme but explanation should reference the adjusted figures.

PAPER: 1MA1_2H			
Question		Modification	Mark scheme notes
13		The question reversed and the candidate asked to describe the transformation instead of drawing. The shape drawn on the grid at the points $(4,8),(6,4),(10,4)$ and $(12,8)$ and labelled 'shape B'. The original shape labelled 'shape A'. Wording added 'Look at the diagram for Question 13 in the Diagram Booklet. It shows shape A and shape B on a grid. Shape A has been mapped onto shape B. Describe fully the single transformation that maps shape A onto shape B'. The grid cut at $x=-7$ and $x=13$. The grid cut at $y=-6$ and $y=9$. Diagram enlarged. Open headed arrows. Shading changed. The axes labels moved to the top of the vertical axis and to the right of the horizontal axis. 3 answer lines provided.	B2 for a complete answer containing all three aspects: enlargement, (scale factor) -2 , (centre of enlargement) origin or $(0,0)$ (B1for a partial answer containing two of the three aspects listed above). Award no marks if more than one transformation is given.
16		Wording added 'Look at the diagram for Question 16 in the Diagram Booklet. It shows an incomplete Venn diagram.' In part (a) wording added 'Complete the Venn diagram in the Diagram Booklet for this information.' Diagram enlarged. The circles relabelled as 'type A', 'type B' and 'type C'. Braille: In the Venn diagram, add (i), (ii), (iii), (iv), (v), (vi), (vii) \& (viii) in the blank spaces. Also add "Ans: (i) \qquad (ii) \qquad (iii) \qquad (iv) \qquad (v) \qquad (vi) \qquad (vii) \qquad (viii) \qquad "	Standard mark scheme

PAPER: 1MA1_2H			
Question		Modification	Mark scheme notes
17		Wording added 'Look at Diagram 1, Diagram 2 and the formulas for Question 17 in the Diagram Booklet. You may be provided with a model for the question and additional formula models.' The wording '...to make the solid T shown below' removed and replaced by '...to make the solid T as shown by Diagram 1 and the model'. Model provided. Formula models provided. Diagram 2 to show a 2D diagram of solid T. Diagrams enlarged. Open headed arrows. The dashed lines made longer and thicker. The frame removed from the formulas. Wording added 'You may be provided with a model.' below the formulas. Wording added 'Diagram 2 is a simplified 2D diagram of solid T. 'The total vertical height...' Braille: Add the sentence "Separate models are provided to accompany these formulae."	Standard mark scheme
18		Wording added 'Look at the diagram for Question 18 in the Diagram Booklet. It shows triangles PQR and QRS which have a common side QR.' Wording added: ' $\mathrm{PQ}=11 \mathrm{~cm} \mathrm{PR}=9.4 \mathrm{~cm}$ angle $\mathrm{QPR}={ }^{\circ} 27^{\circ}$ angle $\mathrm{QRS}=88^{\circ}$ angle $\mathrm{RSQ}=41^{\circ}$. Diagram enlarged. The angles moved outside of the angle arcs and the angle arcs made smaller.	Standard mark scheme
20		Wording added 'Look at the diagram for Question 20 in the Diagram Booklet.' Wording added: 'Angle $\mathrm{BOD}=132^{\circ}$ Angle CED $=16^{\circ}$ ' Diagram enlarged. The angles moved outside of the angle arcs and the angle arcs made smaller.	Standard mark scheme

| PAPER: 1MA1_2H | Modification | Mark scheme notes | |
| :--- | :---: | :--- | :--- | :--- |
| Question | (a) | Wording added 'Look at the diagram for Question 21(a) in the Diagram Booklet. It shows the graph
 of $y=\mathrm{f}(x)$ on a grid.'
 Wording removed 'The graph of $y=\mathrm{f}(x)$ is shown on the grid below.'
 Diagram enlarged.
 The axes labels moved to the top of the vertical axis and to the right of the horizontal axis.
 Wording added 'On the grid in the Diagram Booklet,'. | |
| 21 | (b) | Wording added 'Look at the diagram for Question 21(b) in the Diagram Booklet. It shows a
 sketch.... Diagram enlarged.
 The axes labels moved to the top of the vertical axis and to the right of the horizontal axis.
 The dashed lines made longer and thicker.
 The wording 'shown on the graph above' removed and replaced by 'shown on the graph in the
 Diagram Booklet'. | Standard mark scheme |
| 21 | | | |

Mark Scheme (Results)
Summer 2022
Pearson Edexcel GCSE (9-1)
In Mathematics (1MA1)
Higher (Calculator) Paper 3H

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
4	Chic Decor with correct supporting evidence	P1 P1 P1 C1	```for process to find cost of 15 rolls from Chic Decor, eg \(\frac{15}{3} \times 36(=180)\) or for process to find cost of 15 rolls from Style Papers at normal price, eg \(\frac{15}{5} \times 70(=210)\) or for process to find cost of 1 roll from Chic Decor, eg \(36 \div 3(=12)\) or for process to find cost of 1 roll from Style Papers, eg \(70 \div 5\) (= 14) or for process to find the cost of 5 rolls from Chic Decor, eg \(\frac{36}{3} \times 5(=60)\) for any first step in using the discount at Style Papers, eg \(0.12 \times\) " 210 " \((=25.2(0))\) or \(0.12 \times " 14 "(=1.68)\) or \(0.12 \times 70(=8.4(0))\) or \(1-0.12(=0.88)\) for full process to find cost from Style Papers, eg. " \(210 "\)-" \(25.2 "\) oe \((=184.8(0))\) or " \(0.88 " \times " 210 "\) or for " \(14 "\) - " 1.68 " oe (= 12.32) or " \(0.88 " \times " 14 "\) or for \(70-" 8.4(0) "\) oe \((=61.6(0))\) or " \(0.88 " \times 70\) for Chic Decor with fully correct figures eg 180 and 184.8(0) or 12 and 12.32 or 60 and \(61.6(0)\)```	Could compare the costs for any number of rolls

| Paper: 1MA1/3H | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Question | Answer
 frequency scale
 Incorrect
 point (50, 5) | C2 | Two different statements
 Acceptable
 eg (50, 5) / the last point is incorrect
 the last point should be at (45,5)
 the last point plotted was placed incorrectly
 for his last point he has plotted by the end of the data and for the rest he has plotted by the
 middle
 he did not use the midpoint, he used 50 instead of 45 |
| 5 | | 40 missing (from vertical axis) | |

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
8 (a)	0.14	M1	for a method to find the gradient, eg. $14 \div 100$ using readings from the graph, at least one correct or for an answer of $0.14 x$	Must use the scales on the graph
		A1	for answer in the range 0.135 to 0.145 or ft correct readings from the graph	May be expressed as a fraction
(b)	Cost per unit of	C1	for a correct explanation	
			Acceptable examples eg cost of each unit (of electricity) rate of change of cost with units of electricity used cost per unit of electricity each unit costs 14 p average cost charged for each unit of electricity used Not acceptable examples cost of how many units used costs in pounds per number of units used how much the cost of electricity goes up the relationship of cost and number of units used how steep it is	

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
9 (a)	10^{60}	M1	for a correct first step using one of the rules of indices, eg. $10^{150} \times 10^{90}=10^{240}$ or $10^{360} \div 10^{150}=10^{210}$ or $10^{360} \div 10^{90}=10^{270}$ or $\sqrt{10^{360}}=10^{180}$ or $\sqrt{10^{150}}=10^{75}$ or $\sqrt{10^{90}}=10^{45}$	
		M1	for correct use of rules of indices leading as far as $\sqrt{10^{120}}$ or $\frac{10^{180}}{10^{120}}$	
		A1	cao	
(b)	reason	C1	for correct reasoning	
			Acceptable examples eg should do $50 \times 2\left(\right.$ not $\left.50^{2}\right)$ because $\left(12^{50}\right)^{2}=12^{100}$ because when you have a power inside and outside the bracket you times them because $\left(a^{b}\right)^{c}=a^{b c}\left(\operatorname{not} a^{b^{c}}\right)$ Not acceptable examples because you need to multiply everything in the brackets by 2 because he should have squared 12 as well you add the powers instead of timesing	

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
10	24000	P1 P1 A1	for use of either 0.9 or 0.875 or for 18900 (after 2 years) for using $0.9^{2} \times 0.875(=0.70875)$ oe or for 21000 (after 1 year) cao	
11	240	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for $16 \times 5 \times 3$ cao	
12	23.4	M1 M1 A1 M1 M1 A1	for stating that $A C=8$ or for a relationship that may be used to find $A C$ eg $(A C=) 8 \times \tan 45$ or $\tan 45=\frac{A C}{8}$ for relationship that may be used to find $A B$, eg $\sin (20)=" 8 " \div A B$ or $(A B=) \frac{" 8 "}{\sin 20}$ for answer in the range 23.3 to 23.4 Alternative for a relationship that may be used to find $A D$ eg $\cos (45)=8 \div A D$ oe or $(A D=) 11.3(13 \ldots)$ for a relationship that may be used to find $A B, \operatorname{eg} \frac{A B}{\sin 45}=\frac{" 11.3 "}{\sin 20}$ for answer in the range 23.3 to 23.4	May be seen on diagram May use the sine rule If an answer is given in the range in working and then rounded incorrectly award full marks. May be seen on diagram If an answer is given in the range in working and then rounded incorrectly award full marks.

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
15	Proof	C1 C1 C1	for angle $P Q X=$ angle $S R X$ as angles in the same segment are equal (or angles at the circumference subtended from the same arc/chord of a circle are equal) or angle $Q P X=$ angle $R S X$ as angles in the same segment are equal (or angles at the circumference subtended from the same arc/chord of a circle are equal) or angle $P X Q=$ angle $S X R$ as vertically opposite angles/ vertically opposite angles are equal or for identifying two pairs of corresponding equal angles with no reason given for identifying two pairs of corresponding equal angles with correct reasons given for stating that the triangles are similar because all three pairs of corresponding angles are equal with complete reasons given.	Underlined words need to be shown; reasons need to be linked to their method. Could be shown on the diagram Note that the students third/final reason may be: Angles in a triangle add up to 180
16	17.4	B1 M1 A1	for stating any correct bound, eg. 6.75 or 6.85 or 0.045 or 0.055 using both UB of e and LB of f to work out value of $2 e \div f$, eg $2[\mathrm{UB}$ of $e] \div[\mathrm{LB}$ of $f]$ or $\frac{2 \times 6.85}{0.045}$ for answer in the range 17.4 to 17.5 from correct working	Accept $6.84 \dot{9}$ or 6.8499 ... for 6.85 and 0.0549 or 0.05499 .. for 0.055 $\begin{aligned} & 6.8<\mathrm{UB}(e) \leq 6.85 \\ & 0.045 \leq \mathrm{LB}(f)<0.05 \end{aligned}$ If an answer is given in the range in working and then rounded incorrectly award full marks. Award 0 marks for a correct answer with no (or incorrect) supportive working

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper: 1MA1/3H} \\
\hline Question \& Answer \& Mark \& Mark scheme \& Additional guidance \\
\hline \begin{tabular}{l}
\[
17
\] \\
(a) \\
(b)
\end{tabular} \& histogram drawn
\[
0.4 n
\] \& B3
(B2

(B1

M1

A1 \& \begin{tabular}{l}
for fully correct histogram, eg. relative heights $90,96,44,8,6$

for 4 correct bars

or

for frequency \div class interval for all 5 frequencies and 2 correct bars of different widths)

for 2 correct bars of different widths

or

for frequency \div class interval for at least 3 frequencies)

for finding ratio of heights or widths of bars, eg $5: 1$ or $\frac{1}{5}, 1: 2$ or

$\frac{n}{5}$ oe or $2 n$ oe as answer

or

compares areas of bars, eg 6 and 2.4 or 3 and 1.2 or 150 and 60

for $0.4 n$ oe

 \&

Evidence for this mark may be seen on the diagram

Any 2 numbers in the ratio $2.5: 1$ score M1
\end{tabular}

\hline 18 \& 30.6 \& | P1 |
| :--- |
| P1 |
| P1 |
| P1 |
| A1 | \& | for process to find $T C$, eg. $(T C=) 14 \times \frac{3}{3+4}(=6)$ |
| :--- |
| for process to find $T D$, eg. $(T D=) \sqrt{14^{2}+6^{2}}$ or $\sqrt{232}$ or $2 \sqrt{58}(=15.2 \ldots)$ |
| for process to find $S D$, using area of a trapezium, |
| $147=0.5 \times(S D+12) \times 14$, or $S D=9$ |
| for $\tan ^{-1}\left(\frac{" 9 "}{\text { "15.2..." }}\right)$ |
| for answer in the range 30.4 to 30.7 | \& | Lengths of $T C, T D, S D$ may be seen on the diagram |
| :--- |
| A complete set of processes to find the angle is needed where an alternative route is involved with more than one stage in the working |
| If an answer is given in the range in working and then rounded incorrectly award full marks. |

\hline
\end{tabular}

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
19	$\frac{-11 x+2}{x^{2}-4}$	M1 M1 M1 A1	for writing at least one of the 3 terms with a denominator of $\left(x^{2}-4\right)$ or $(x-2)(x+2)$ eg. $\frac{3 x(x-2)}{x^{2}-4}$ oe or $\frac{(x+2)(2 x+1)}{x^{2}-4}$ oe or $\frac{x^{2}-4}{x^{2}-4}$ for $\frac{3 x(x-2)}{x^{2}-4}-\frac{(x+2)(2 x+1)}{x^{2}-4}-\frac{x^{2}-4}{x^{2}-4}$ oe or for $\frac{x^{2}-11 x-2}{x^{2}-4}(-1)$ or for $\frac{\left[x^{2}-11 x-2\right]}{x^{2}-4}-\frac{x^{2}-4}{x^{2}-4}$ for a numerator of $3 x^{2}-6 x-2 x^{2}-5 x-2-x^{2}+4$ for $\frac{-11 x+2}{x^{2}-4}$	Students may work with a denominator of $(x-2)(x+2)$ for the first 3 marks [$\left.x^{2}-11 x-2\right]$ denotes their expansion of $3 x(x-2)-(x+2)(2 x+1)$ May be simplified Accept $a=-11$ and $b=2$
20	44384	P1 P1 P1 A1	for process to find a, eg. $29600=24000 a+800$ or $(a=) 1.2$ oe for $\left(P_{2020}=\right) " 1.2 " \times 29600+800(=36320)$ for $\left(P_{2021}=\right) " 1.2 " \times " 36320 "+800$ cao	

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
21	$\frac{11}{21}$	P1	for any product of 3 probabilities of the form $\frac{a}{9} \times \frac{b}{8} \times \frac{c}{7}$ where $a<9, b<8, c<7$	May see fraction with denominator 504 Students who indicate they are using the approach $\mathrm{P}($ even $)=1-\mathrm{P}($ odd $)$ should be given credit as appropriate
		P1	for a product of 3 probabilities giving an even sum, eg. $\mathrm{E}, \mathrm{E}, \mathrm{E}=\frac{4}{9} \times \frac{3}{8} \times \frac{2}{7}$ or $\mathrm{E}, \mathrm{O}, \mathrm{O}=\frac{4}{9} \times \frac{5}{8} \times \frac{4}{7}$	
		P1	for summing the product of at least three correct triples, $\begin{aligned} & \mathrm{eg}(\mathrm{E}, \mathrm{E}, \mathrm{E}+\mathrm{E}, \mathrm{O}, \mathrm{O}+\mathrm{O}, \mathrm{O}, \mathrm{E}=) \\ & \frac{4}{9} \times \frac{3}{8} \times \frac{2}{7}+\frac{4}{9} \times \frac{5}{8} \times \frac{4}{7}+\frac{5}{9} \times \frac{4}{8} \times \frac{4}{7} \text { OR } 3\left(\frac{4}{9} \times \frac{5}{8} \times \frac{4}{7}\right) \end{aligned}$	
		A1	for $\frac{11}{21} \mathrm{oe}$ SCB1 for answer of $\frac{364}{729}$ (replacement)	Accept any equivalent fraction, decimal form $0.52(38 . .$.$) or percentage form$ 52(.38...)\%

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
22	$\begin{gathered} (-3,-11) \text { and } \\ (5.5,6) \end{gathered}$	M1	for method to eliminate one variable, eg $(2 x-5)^{2}=6 x^{2}-25 x-8$ or $y^{2}=6\left(\frac{y+5}{2}\right)^{2}-25\left(\frac{y+5}{2}\right)-8$	
		M1	for expanding the square to give, eg. $4 x^{2}-20 x+25=6 x^{2}-25 x-8$ or $y^{2}=6\left(\frac{y^{2}+10 y+25}{4}\right)-25\left(\frac{y+5}{2}\right)-8$	
		M1	for method to solve equation $2 x^{2}-5 x-33(=0)$, eg $(2 x-11)(x+3)(=0)$ or $x=\frac{--5 \pm \sqrt{(-5)^{2}-4 \times 2 \times-33}}{2 \times 2}$ or $-3,5.5$ oe or for method to solve equation $2 y^{2}+10 y-132(=0)$, eg. $(2 y+22)(y-6)(=0)$ or $y=\frac{-10 \pm \sqrt{10^{2}-4 \times 2 \times-132}}{2 \times 2}$ or $-11,6$	
		A1	for $(-3,-11)$	
		A1	for $(5.5,6)$ oe	

Modifications to the mark scheme for Modified Large Print (MLP) papers: 1MA1 3H

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme. Notes apply to both MLP papers and Braille papers unless otherwise stated.

The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm 5^{\circ}$
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1_3H			
Question		Modification	Mark scheme notes
1		Wording added 'Look at the diagram for Question 1 in the Diagram Booklet. It shows a right-angled triangle, ABC.' Diagram enlarged. The diagram labelled ABC. Wording added: ' $\mathrm{AB}=4 \mathrm{~cm} \mathrm{AC}=8.5 \mathrm{~cm} \mathrm{BC}=x \mathrm{~cm}$ '. Wording added 'Angle ABC is a right angle.' The right angle made more obvious.	Standard mark scheme
2	(b)	The letter ' d ' changed to ' n '	Standard mark scheme but note the change of letter
3		Wording added 'Look at the information for Question 3 in the Diagram Booklet.' Wording added 'as shown in the ratio.'	Standard mark scheme
4		Wording added 'Look at the information for Question 4 in the Diagram Booklet.' Wording added 'The information in the Diagram Booklet shows the cost...'. Diagram enlarged. The information stacked vertically.	Standard mark scheme
5		Wording added 'Look at the diagram for Question 5 in the Diagram Booklet. It shows a frequency polygon.' Wording added 'The table below...'. Wording added 'Amos draws the frequency polygon in the Diagram Booklet...'. Diagram enlarged. Open headed arrows. Change the crosses to dots. The axes labels moved to the top of the vertical axis and to the left of the horizontal axis.	Standard mark scheme
7		The letter x changed to y. Wording added 'Look at the diagram for Question 7 in the Diagram Booklet. It shows...'. Wording added: ' $\mathrm{TQ}=2 y \mathrm{~cm}, \mathrm{TS}=4 y \mathrm{~cm}, \mathrm{SR}=3 y \mathrm{~cm}, \mathrm{RV}=5 \mathrm{~cm}$ ' Wording added 'The trapezium QUVR is shaded.' Diagram enlarged. Open headed arrows. The text moved out of the arrows. Shading changed.	Standard mark scheme
8		Wording added 'Look at the diagram for Question 8 in the Diagram Booklet. It shows a graph.' Wording added 'David uses the graph in the Diagram Booklet...'. Diagram enlarged. Right axes labelled. Open headed arrows. Remove the small squares. The axes labels moved to the top of the vertical axis and to the left of the horizontal axis.	Standard mark scheme

12		Wording added 'Look at the diagram for Question 12 in the Diagram Booklet.' Wording added ' \ldots are right-angled triangles with a common side AC.' Wording added 'Angle ACD and angle ACB are right-angles.' Diagram enlarged. The angles moved outside of the angle arcs and the angle arcs made smaller.	Standard mark scheme
15		Wording added 'Look at the diagram for Question 15 in the Diagram Booklet.' Diagram enlarged.	Standard mark scheme
16		Letter ' e ' changed to ' t '. Letter ' f ' changed to ' u '.	Standard mark scheme but note change of letters.
17	(a)	The values changed: 48 changed to 50. 22 changed to 30. 8 changed to 20. 12 changed to 20. Wording added 'Look at the diagram for Question 17(a) in the Diagram Booklet. It shows a grid.' Wording added 'The table below...'. 'On the grid in the Diagram Booklet...'. Diagram enlarged. Small squares removed. Open headed arrows. Grid reduced in size. Axes labels moved to the top of the vertical axis and to the left of the horizontal axis.	note change in values: relative heights: $90,100,60,20,10$

17	(b)	Wording added 'Look at the diagram for Question 17(b) in the Diagram Booklet. It is a histogram which shows...'. The values changed: $0.5-1$ moved up to 30 small squares (6 squares high); 1-2 moved up to 25 small squares (5 squares high); $3-5$ moved up to 5 small squares (1 square high) Diagram enlarged. Small squares removed. Open headed arrows. Shading changed. The axes labels moved to the top of the vertical axis and to the left of the horizontal axis. Question 17(b) M1 for comparing the heights of the bars of the two intervals, showing them in the ratio $5: 2$, eg. height of 1 $-2=5$ units and height of 3 $5=1$ unit or compares areas of bars, eg 10 and 4 A1 for $0.4 n$ oe

18		Open-fronted model provided with a dowel from S to T and D to T. A wedge placed at DTS. DC is labelled with 14 cm . Wording added 'Look at Diagram 1 and Diagram 2 for Question 18 in the Diagram Booklet. You may be provided with a model.' Wording added 'Diagram 1 and the model show a prism ABCDSPQR.' ' \ldots. a trapezium of area $147 \mathrm{~cm}^{2}$ as shown in Diagram 2'; 'CD $=14 \mathrm{~cm}$.' Diagram 1 to show the original diagram. The line 'DT' joined with a dotted line and an angle arc added. Diagram 2 to show SRCD with $12 \mathrm{~cm}, 14 \mathrm{~cm}$ and two right angles marked. Diagrams enlarged. The dashed lines made longer and thicker. Braille: For ALL candidates, provide a simplified 2D diagram of the cross section SRCD. Wording added: "Look at the diagram for Question 18 in the separate Diagram Booklet. The diagram is NOT accurately drawn. The diagram is a simplified 2D diagram of the cross section of the prism."	Standard mark scheme
20		Wording added 'Look at the table for Question 20 in the Diagram Booklet.' Wording added 'The table in the Diagram Booklet...'. Table turned vertical.	Standard mark scheme
21		Wording added 'Look at the diagram for Question 21 in the Diagram Booklet. It shows Ray's nine cards numbered 1 to 9.' Diagram enlarged. Braille: Text frames removed and the numbers listed. Words changed to "Ray has nine cards numbered 1 to 9 , as listed below."	Standard mark scheme

